skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pérez-González, Pablo G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The 3D geometries of high-redshift galaxies remain poorly understood. We build a differentiable Bayesian model and use Hamiltonian Monte Carlo to efficiently and robustly infer the 3D shapes of star-forming galaxies in James Webb Space Telescope Cosmic Evolution Early Release Science observations with log M * / M = 9.0 10.5 atz= 0.5–8.0. We reproduce previous results from the Hubble Space Telescope Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey in a fraction of the computing time and constrain the mean ellipticity, triaxiality, size, and covariances with samples as small as ∼50 galaxies. We find high 3D ellipticities for all mass–redshift bins, suggesting oblate (disky) or prolate (elongated) geometries. We break that degeneracy by constraining the mean triaxiality to be ∼1 for log M * / M = 9.0 9.5 dwarfs atz> 1 (favoring the prolate scenario), with significantly lower triaxialities for higher masses and lower redshifts indicating the emergence of disks. The prolate population traces out a “banana” in the projected b / a log a diagram with an excess of low-b/a, large- log a galaxies. The dwarf prolate fraction rises from ∼25% atz= 0.5–1.0 to ∼50%–80% atz= 3–8. Our results imply a second kind of disk settling from oval (triaxial) to more circular (axisymmetric) shapes with time. We simultaneously constrain the 3D size–mass relation and its dependence on 3D geometry. High-probability prolate and oblate candidates show remarkably similar Sérsic indices (n∼ 1), nonparametric morphological properties, and specific star formation rates. Both tend to be visually classified as disks or irregular, but edge-on oblate candidates show more dust attenuation. We discuss selection effects, follow-up prospects, and theoretical implications. 
    more » « less
  2. Abstract We report the discovery of an accreting supermassive black hole atz= 8.679. This galaxy, denoted here as CEERS_1019, was previously discovered as a Lyα-break galaxy by Hubble with a Lyαredshift from Keck. As part of the Cosmic Evolution Early Release Science (CEERS) survey, we have observed this source with JWST/NIRSpec, MIRI, NIRCam, and NIRCam/WFSS and uncovered a plethora of emission lines. The Hβline is best fit by a narrow plus a broad component, where the latter is measured at 2.5σwith an FWHM ∼1200 km s−1. We conclude this originates in the broadline region of an active galactic nucleus (AGN). This is supported by the presence of weak high-ionization lines (N V, N IV], and C III]), as well as a spatial point-source component. The implied mass of the black hole (BH) is log (MBH/M) = 6.95 ± 0.37, and we estimate that it is accreting at 1.2 ± 0.5 times the Eddington limit. The 1–8μm photometric spectral energy distribution shows a continuum dominated by starlight and constrains the host galaxy to be massive (log M/M∼9.5) and highly star-forming (star formation rate, or SFR ∼ 30 Myr−1; log sSFR ∼ − 7.9 yr−1). The line ratios show that the gas is metal-poor (Z/Z∼ 0.1), dense (ne∼ 103cm−3), and highly ionized (logU∼ − 2.1). We use this present highest-redshift AGN discovery to place constraints on BH seeding models and find that a combination of either super-Eddington accretion from stellar seeds or Eddington accretion from very massive BH seeds is required to form this object. 
    more » « less